COMPSs K-means
K-means clustering is a method of cluster analysis that aims to partition ''n'' points into ''k'' clusters in which each point belongs to the cluster with the nearest mean. It follows an iterative refinement strategy to find the centers of natural clusters in the data.
- Publisher
- [<#ROCrate::Organization https://ror.org/05sd8tv96 @properties={"@id"=>"https://ror.org/05sd8tv96", "@type"=>"Organization", "name"=>"Barcelona Supercomputing Center"}>]
- License
- https://opensource.org/licenses/Apache-2.0
Contents
-
KMeans.java
Size: 7564
Format: text/plain
-
complete_graph.svg
Size: 229349
Format: [["image/svg+xml", <#ROCrate::ContextualEntity https://www.nationalarchives.gov.uk/PRONOM/fmt/92 @properties={"@id"=>"https://www.nationalarchives.gov.uk/PRONOM/fmt/92", "@type"=>"WebSite", "name"=>"Scalable Vector Graphics"}>]]
-
kmeans.jar
Size: 8101
Format: [["application/java-archive", <#ROCrate::ContextualEntity https://www.nationalarchives.gov.uk/PRONOM/x-fmt/412 @properties={"@id"=>"https://www.nationalarchives.gov.uk/PRONOM/x-fmt/412", "@type"=>"WebSite", "name"=>"Java Archive Format"}>]]
-
App_Profile.json
Size: 800
Format: ["application/json", <#ROCrate::ContextualEntity https://www.nationalarchives.gov.uk/PRONOM/fmt/817 @properties={"@id"=>"https://www.nationalarchives.gov.uk/PRONOM/fmt/817", "@type"=>"WebSite", "name"=>"JSON Data Interchange Format"}>]
-
compss_command_line_arguments.txt
Size: 14
Format: text/plain
-
KMeansDataSet.java
Size: 6565
Format: text/plain
-
KMeansItf.java
Size: 1638
Format: text/plain